ASSESSMENT OF PHARMACY INFORMATION SYSTEM PERFORMANCE IN THREE HOSPITALS IN EASTERN PROVINCE, SAUDI ARABIA

Posted on December 29, 2015 by Administrator

Category: Electronic Records
Tag: pharmacy information system; usage; hospital users; system administrators
by Azza El.Mahalli, MD, PhD; Sahar H. El-Khafif, MSc, PhD; and Wid Yamani, MSc

Abstract

The pharmacy information system is one of the central pillars of a hospital information system. This research evaluated a pharmacy information system according to six aspects of the medication process in three hospitals in Eastern Province, Saudi Arabia. System administrators were interviewed to determine availability of functionalities. Then, system users within the hospital were targeted to evaluate their level of usage of these functionalities. The study was cross-sectional. Two structured surveys were designed. The overall response rate of hospital users was 31.7 percent. In all three hospitals studied, the electronic health record is hybrid, implementation has been completed and the system is running, and the systems have computerized provider order entry and clinical decision support. Also, the pharmacy information systems are integrated with the electronic health record, and computerized provider order entry and almost all prescribing and transcription functionalities are available; however, drug dispensing is a mostly manual process. However, the study hospitals do not use barcode-assisted medication administration systems to verify patient identity and electronically check dose administration, and none of them have computerized adverse drug event monitoring that uses the electronic health record. The numbers of users who used different functionalities most or all of the time was generally low. The highest frequency of utilization was for patient administration records (56.8 percent), and the lowest was for linkage of the pharmacy information system to pharmacy stock (9.1 percent). Encouraging users to use different functionalities was highly recommended.

Keywords: pharmacy information system; usage; hospital users; system administrators

Introduction

A pharmacy information system (PIS) must have several core functions, including inpatient and outpatient order entry, dispensing, and inventory and purchasing management. A PIS makes practitioners aware of the unsafe measurement of drugs, prescribed overdoses, and potential drug interactions. In addition, a PIS can help pharmacists “reduce clinical errors with intelligent warnings, messages, and rejection notices; gain immediate access to clinical information from throughout the enterprise; access all relevant data from a single centralized processing screen; and minimize lost revenue with the option to charge on administration.”

Assessing hospital pharmacy practice is very important to identify strengths and weaknesses. The American Society of Health-System Pharmacists (ASHP) national survey of pharmacy practice in hospital settings in the United States focuses on practices and technologies for managing and
improving the medication use system and the role that pharmacists play in this effort. The national surveys are organized according to six aspects of the medication-use system: prescribing, transcribing, dispensing, administration, monitoring, and patient education. These surveys therefore represent a composite picture of the ways hospitals and health systems are managing and improving the entire medication-use system and the role that pharmacists play in medication-use system management. Assessment of prescribing and transcribing practices includes the process of formulary system management; the use of drug policy tools by the pharmacy and therapeutics committee to improve medication use; the extent of pharmacist consultations; the provision of drug information to prescribers; the process of medication order receiving, evaluation, and transcription; and the use of computerized provider order entry (CPOE) systems, electronic medical records, and other medication safety technologies. Assessment of monitoring and patient education practices is used to evaluate pharmacists’ medication therapy monitoring activities and inpatient therapeutic drug monitoring activities, the methods used to monitor adverse drug events, patient education and counseling activities, transition of-care services, processes of medication reconciliation, medication order review and entry, implementation of medication-use system technologies, outpatient dispensing pharmacy operations, and pharmacist involvement in ambulatory clinics. Assessment of dispensing and administration practices examines the inpatient medication distribution system, the use of technology in medication distribution, the methods for medication preparation and dispensing, the use of closed-system transfer devices, the process of medication administration, the use of smart infusion pumps, the use of barcode technology, the use of medication administration records (MARs), the outsourcing of preparation activities, and the process of medication order review. This aspect also includes human-resource commitments and turnover, estimated vacancy rates of hospital pharmacist and pharmacy technician positions, and acquisition costs of pharmaceuticals.

Throughout the last two decades, researchers have identified many barriers to the adoption and use of computer applications in healthcare. Assessment of information technology systems is important to identify barriers and suggest solutions. Nanji et al. identified that process issues (training requirements and process flow issues), technology issues (hardware, software, and the role of vendors), and resistance (communication issues, changing roles, and negative perceptions about technology) are the main barriers to implementation of a pharmacy barcode scanning system. The recommended strategies to overcome these barriers were adequate training, continuous improvement, and adaptation of workflow.

As reported in the literature, the main barriers to the use of CPOE include change in workflow, lack of standardization of medical terminology and different technologies, and lack of financial incentives. One study proposed a comprehensive model of four pillars to increase the adoption of
CPOE and ensure that its use leads to improvement in quality and cost: (1) incentives to promote adoption, (2) further research into the benefits and factors associated with successful implementation, (3) development of guidelines for implementation, and (4) development of common measures to assess its impact. Barron et al. identified that a major barrier to the adoption of CPOE is cost, which is largely related to the purchase and implementation of a new information system. However, Poon et al. suggested that to address the obstacles to implementing CPOE, “hospitals could mitigate the cost barrier by refocusing their priorities on patient safety.”

In Saudi Arabia, published studies assessing hospital pharmacy practice are limited. Recently, Alsultan et al. designed a project in collaboration with the King Saud University College of Pharmacy, the Saudi Pharmaceutical Society, and the ASHP. The project surveyed the current state of pharmacy practices in the hospitals in the Riyadh region.

To the best of the researchers’ knowledge, no published research has been done to assess PIS use in Eastern Province, Saudi Arabia. Measuring the adoption rate of this technology is crucial for decision making at the central level.

Objectives

This research evaluated the PIS in three hospitals in Eastern Province, Saudi Arabia, from two points of view:

- The first part assessed the availability of the PIS functionalities in three study settings using the six steps in the medication process (prescribing, transcribing, dispensing, administration, monitoring, and patient education).
- The second part evaluated the usage level of the PIS in each of the six steps in the medication process.

Material and Methods

This study examined the PIS at each of three hospitals: King Fahd Hospital of the University–University of Dammam (KFHU), which used the QuadraMed electronic health record (EHR); Dammam Central Hospital (DCH), which used the MedicaPlus EHR; and King Fahd Specialist Hospital in Dammam (KFSH-D), which used the MedicaPlus EHR with customization according to users’ needs.

The study design was a cross-sectional, paper-based survey. The research team was asked by the Saudi Ministry of Health to undergo the United States National Institutes of Health web-based training course “Protecting Human Research Participants” before starting the research project. All team members were successfully completed the course. Two members of the research team who
are involved in teaching health information systems to university students and had previously completed research projects on information and communication technology and information systems interviewed the system administrators to determine availability of different PIS functionalities.

DCH and KFSH-D had research units in which a data supervisor for each unit was assigned to collect data from users (physicians, nurses, and pharmacists). Accordingly, the research team provided copies of a consent form and the data collection questionnaires to the data supervisors. At KFHU, the research team distributed the consent forms and the data collection questionnaires to the departments (pharmacy, nursing, and physician office).

A convenience sample of PIS users—those who were available at the time of data collection—was included. PIS users were physicians, pharmacists, and nurses. Respondents totaled 208 of 500 potential respondents at KFHU for a response rate of 41.6 percent, 156 of 500 at DCH for a response rate of 31.2 percent, and 111 of 500 at KFSH-D for a response rate of 22.2 percent. The total number of respondents was 475. The overall response rate was 31.7 percent.

The data collection tool for the system administrators included hospital characteristics, EHR system criteria, and PIS functionalities. The PIS functionalities were based on the six steps of the medication process (prescribing, transcribing, dispensing, administration, monitoring, and patient education). (See Appendix A.)

Then, a structured survey for the PIS users was designed as a checklist to test adoption rates of these functionalities. (See Appendix B). The response scale for usage was as follows: I do not use; I use some of the time; I use most or all of the time; not available/not active; and not applicable to my specialty. Data collection tools were not tested for validity or reliability. The PIS users' data collection tool was self-administered. Data were collected after approval was received from the committee of research ethics at the University of Dammam and the Ministry of Health in Saudi Arabia.

Data were statistically analyzed using SPSS version 20.0. Results were displayed as frequency tables. Chi-square tests were used to test significant differences between hospitals at $p < .05$. The Kruskal-Wallis test was used to test the difference between mean ranks of the use of PIS functionalities among physicians, nurses, and pharmacists.

Results

Table 1 illustrates some common features at the three hospitals: The EHR system was hybrid (part paper and part electronic). Implementation was completed and the system was running. The system had CPOE. The PIS was integrated with the EHR and CPOE. The EHR had a clinical decision-support (CDS) system that supported CPOE and the PIS. All prescribing and transcription functionalities were available at DCH and KFSH-D. However, some functionalities were not available at KFHU. Prescription orders were received in the pharmacy through CPOE in all study settings. Dispensing in
inpatient departments was almost entirely manual with the exception of KFSH-D, where robotic and barcode technology was used in inpatient departments. None of the hospitals had barcode-assisted medication administration (BCMA) systems to verify patient identity and electronically check dose administration. In addition, none of the hospitals had smart infusion pumps or adverse drug event (ADE) monitoring using the EHR system.

Table 2 shows that 78.7 percent of participants were nurses, 82.5 percent were female, and 44.2 percent were under 30 years of age. The majority had 5 to 10 years of work experience (37.5 percent) and 2 to 5 years of experience in PIS/CPOE use (43.6 percent).

Table 3 reveals that the numbers of participants who used the patient data functionalities of the system most or all of the time were generally low. The highest adoption rate was for the patient administration record (56.8 percent), and the lowest was for the patient problem list (29.5 percent). The numbers of participants who used the PIS prescription functionalities most or all of the time were low. The highest frequency was for prescription orders sent electronically to the pharmacy (51.6 percent). The lowest frequencies were for drug-to- indication linkage (19.2 percent) and linkage to other drug information (18.5 percent). The numbers of participants who used decision-support system functionalities most or all of the time were very low. The highest frequency was for drug-allergy alerts (38.5 percent), and the lowest frequencies were for drug–disease/condition alerts (12 percent) and age precaution dosage support (10.3 percent).

Table 4 reveals that among the dispensing and administration functionalities, the highest adoption rate was for the use of the system to print drug labels (47.6 percent), and the lowest was for use of linkage of the PIS to the pharmacy stock (9.1 percent).

Table 5 illustrates that the frequency of use of the PIS for patient education about drugs' uses and precautions was 14.7 percent, and the frequency of use to monitor patients' response/progress with certain medications was 14.5 percent.

Table 6 demonstrates that among the different professions, pharmacists had the lowest adoption rank for the patient data (106.76) and prescription (46.88) functionalities. Differences between the different professions were significant (.000 for each). Pharmacists had the lowest utilization rank for the decision-support system (164.71). Physicians had the lowest adoption rank for the prescription dispensing and administration (143.09) and monitoring and patient education (154.19) functionalities.

Discussion

Although most PIS features were available in the study settings, the frequency of users who used different functionalities most or all of the time was generally low.

In a study done in Shiraz, Iran, to evaluate PIS use and identify its strengths and weaknesses in the teaching hospitals affiliated with Shiraz University of Medical Sciences, results revealed that the data
entry mechanism and presentation of reports had complete conformity to the standards of the American College of Physicians. In contrast, the current study demonstrated that the frequency of use of the system for patients’ data was approximately 50 percent. Moreover, the frequency of use of the patient problem list was only 29.5 percent.

In a study done by Isfahani et al. for evaluation of the role of a PIS in the management of medication-related clinical complications, researchers studied the standards related to the registration of drug-related information, drug use condition, drug allergies and drug interactions, and patients’ nutrition condition and body performance. Their findings (with maximum mean scores of 44.75, 10, and 31.25 percent for teaching, private, and social-service hospitals, respectively) revealed that the hospitals examined in the study were remarkably far from the desirable state in their drug errors, drug side effects, drug interactions, and drug usage–related challenges. Moreover, the study done in Shiraz, Iran, found that drug interactions showed no conformity with the standards of the American College of Physicians. This finding is parallel to those of the current study, in which the participants’ use of the decision-support system most or all of the time was generally very low. The use of drug-allergy alerts was only 38.5 percent, the use of drug–drug interaction or contraindication alerts was only 35.8 percent, and the use of drug–disease/condition alerts was very low (12 percent). In addition, the frequency of use of the PIS features most or all of the time to monitor patients’ response/progress with certain medications was very low (14.5 percent).

In a study by Hines et al., researchers conducted on-site interviews with pharmacists throughout the state of Arizona to document pharmacists’ awareness of drug–drug interaction and other medication-related CDS features available within a PIS. All respondents indicated that their pharmacy system provided drug-allergy and drug–drug interaction alerts. Approximately 60 percent of the pharmacists reported that their drug–drug interaction decision-support systems included recommendations for managing drug interactions. This goes hand in hand with the findings of the current study, in which system administrators reported that the PIS/CPOE had drug interaction and contraindication alerts and drug-allergy alert features.

Pedersen et al. studied the process of medication order receiving, evaluation, and transcription and the use of CPOE systems, EHRs, and other medication safety technologies. They found that EHR systems are the cornerstone of the process and have partially or completely replaced paper in nearly 60 percent of hospitals. The use of CPOE systems with decision support to assist prescribers is increasing. The authors of that study concluded that the increased use of enterprise systems that include various patient-safety technologies or that integrate CPOE and a PIS has nearly eliminated the need for the pharmacy staff to reenter medication orders from CPOE systems. Findings of the current study, however, indicated that the use of the system to order prescription and send orders electronically to the pharmacy was only 51.6 percent for each. The interviews with the system administrators of the study settings revealed that the three hospitals were using hybrid medical
records (part paper and part electronic). Moreover, the use of other prescription functionalities that improve patient safety was low. Participants’ use of the drug formulary most or all of the time was only 43.8 percent, and use of the recommendations for therapeutic drug monitoring or lab tests was only 37.1 percent. In addition, linkage to drug indications (19.2 percent) and linkage to other drug information (18.5 percent) accounted for the lowest rates of use most or all of the time.

Isfahani et al. explored the role that the PIS may play in the management of medication-related complications. They claimed that the hospitals in question did not pay sufficient attention to standards established by pharmaceutical associations regarding medication therapy, including registration of drug usage status, drug interactions, and drug side effects in the PIS. Maximum mean score percent of 44.75, 10, and 31.25 were obtained for teaching, private and social services hospitals, respectively. These findings are comparable to those of the current study, in which system administrators reported that the hospitals in the study had no computerized ADE monitoring using the EHR system.

Pedersen et al. revealed that automated dispensing cabinets were used by 89 percent of hospitals, robots were used by 11 percent, carousels were used in 18 percent, and machine-readable coding was used in 34 percent of hospitals to verify doses before dispensing. MARs have become increasingly computerized, with 67 percent of hospitals using electronic MARs. BCMA was used in 50 percent of hospitals, and 68 percent of hospitals had smart infusion pumps. In contrast, the hospitals in the current study had no BCMA systems to verify patient identity and electronically check dose administration. Moreover, they had no smart infusion pumps. Drugs were dispensed in inpatient departments almost entirely manually, although one hospital used robotic technology. Automated dispensing cabinets were used in one hospital, and carousels were used in another hospital. However, MARs were available in all study settings.

Hospitals use many methods to identify patients in need of medication therapy monitoring, such as using a list of medications to identify patients who require daily monitoring by pharmacists or using abnormal laboratory test values to prompt dosage adjustments. Other methods include targeting patients as directed by a hospital committee (50.1 percent), by specific medical or surgical services (41.1 percent), by high-cost medications (30.7 percent), and by disease state (30.7 percent). The use of these methods has been stable during the last six years. These findings contradict those of the present study, in which system administrators reported that study hospitals had no computerized ADE monitoring using the EHR system. Moreover, the frequency of PIS users’ utilization of system features to monitor patients’ response/progress with certain medications most or all the time was very low (14.5 percent).

Pedersen et al. reported that 21.5 percent of hospitals have pharmacists routinely conduct discharge medication counseling for at-risk patient groups. Furthermore, 9.4 percent of hospitals routinely
have pharmacists follow up with selected high-risk patient groups (e.g., through phone calls) regarding appropriate postdischarge medication use. These findings are comparable to those of the current study, in which the mean rank of utilizing monitoring and patient education by pharmacists was 172.16. Moreover, the frequency of PIS users’ utilization of system features for patient education about drugs’ usage and precautions most or all the time was very low (14.7 percent). However, system administrators in the hospitals studied mentioned that KFHU and KFSH-D had computerized systems for patient education about drugs’ uses and precautions. However, DCH did not have this feature.

Conclusions and Recommendations

Most PIS features were available in the study settings. However, adoption rates of different functionalities most or all of the time were generally low. Top problem areas were as follows: among data functionalities of the system, the patient problem list; among PIS prescription functionalities, the drug-to-indication linkage and linkage to other drug information; among decision-support system functionalities, the drug–disease/condition alerts and age precaution dosage support; among dispensing and administration functionalities, the use of linkage of the PIS to the pharmacy stock; and among monitoring and patient education, the monitoring of patients’ response/progress with certain medications and the use of the PIS for patient education about drugs’ uses and precautions. Furthermore, pharmacists and physicians should be targeted first.

The following actions are recommended:

1. Involve healthcare professionals in the process of system choice and implementation.
2. Provide effective training for users on the use of the system.
3. Ensure availability of system administrators or a help desk for help at any time.
4. Allow time for use of the system (i.e., do not make usage of the system an added burden for the users).
5. Have a system administrator track the usage level of different functionalities and communicate this information with users.
6. Study problem areas experienced by users and fix them.
7. Customize the PIS functionalities according to users’ needs; for example, add computerized ADE monitoring using the EHR system to monitor ADEs in all study settings, and add a computerized system for patient education about drugs’ usage and precautions at DCH.
8. To measure the extent of PIS adoption over time, repeat the survey nationally at regular intervals (every two years, three years, etc.).

This research is applicable to other regions. Specifically, the kingdom of Saudi Arabia is divided into many provinces, and this study could be conducted in other provinces, such as the central province, which includes the capital (Riyadh) and other surrounding cities, and the western provinces, which
include Makkah, Madinah, Jeddah, and other surrounding cities. This additional research should help us better understand the level of adoption among other provinces and the factors affecting such adoption.

Source of Funding

The Deanship of Scientific Research at University of Dammam in SA (project code 2014290) funded this study. The source of funding has no role in data collection, data analysis, or writing of the final report.

Azza El.Mahalli, MD, PhD, is an associate professor in the Department of Health Information Management and Technology in the College of Public Health and Health Informatics at the University of Dammam in Saudi Arabia.

Sahar H. El-Khafif, MSc, PhD, is an assistant professor in the Department of Industrial Electronics and Control Engineering in Faculty of Electronic Engineering at Menoufia University in Egypt.

Wid Yamani, MSc, is a lecturer in the Department of Health Information Management and Technology in the College of Public Health and Health Informatics at the University of Dammam in Saudi Arabia.

Notes

7. Ibid.

21. Azizi, A. "A Study of Medical Record in Teaching Hospitals Affiliated to Iran, Tehran and Shahid Beheshti Universities Based on Standards of the American Physicians College."

Printer friendly version of this article.

Azza El.Mahalli, MD, PhD; Sahar H. El-Khafif, MSc, PhD; and Wid Yamani, MSc. "Assessment of Pharmacy Information System Performance in Three Hospitals in Eastern Province, Saudi Arabia." *Perspectives in Health Information Management* (Winter 2016): 1-25.
There are no comments yet.